高考數(shù)學(xué)易錯的知識點(diǎn)總結(jié)【優(yōu)秀】

大風(fēng)車考試網(wǎng)

求函數(shù)奇偶性的常見錯誤

錯因分析:求函數(shù)奇偶性的常見錯誤有求錯函數(shù)定義域或是忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當(dāng)?shù)。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對稱,如果不具備這個條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點(diǎn)對稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷,在用定義進(jìn)行判斷時要注意自變量在定義域區(qū)間內(nèi)的任意性。

抽象函數(shù)中推理不嚴(yán)密致誤

錯因分析:很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計出來的,在解決問題時,可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。解答抽象函數(shù)問題要注意特殊賦值法的應(yīng)用,通過特殊賦值可以找到函數(shù)的不變性質(zhì),這個不變性質(zhì)往往是進(jìn)一步解決問題的突破口。抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過程要層次分明,書寫規(guī)范。

函數(shù)零點(diǎn)定理使用不當(dāng)致誤

錯因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個c也是方程f(c)=0的根,這個結(jié)論我們一般稱之為函數(shù)的零點(diǎn)定理。函數(shù)的零點(diǎn)有“變號零點(diǎn)”和“不變號零點(diǎn)”,對于“不變號零點(diǎn)”,函數(shù)的零點(diǎn)定理是“無能為力”的,在解決函數(shù)的零點(diǎn)時要注意這個問題。

混淆兩類切線致誤

錯因分析:曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過一個點(diǎn)的切線是指過這個點(diǎn)的曲線的所有切線,這個點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過一個點(diǎn)的切線可能不止一條。因此求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。

混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤

錯因分析:對于一個函數(shù)在某個區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會出錯。研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時一定要注意:一個函數(shù)的導(dǎo)函數(shù)在某個區(qū)間上單調(diào)遞增(減)的充要條件是這個函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。

導(dǎo)數(shù)與極值關(guān)系不清致誤

錯因分析:在使用導(dǎo)數(shù)求函數(shù)極值時,很容易出現(xiàn)的錯誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒有對這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。出現(xiàn)這些錯誤的原因是對導(dǎo)數(shù)與極值關(guān)系不清?蓪(dǎo)函數(shù)在一個點(diǎn)處的導(dǎo)函數(shù)值為零只是這個函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時一定要注意對極值點(diǎn)進(jìn)行檢驗(yàn)。

用錯基本公式致誤

錯因分析:等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q≠1時,前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時,前n項(xiàng)和公式Sn=na1。在數(shù)列的基礎(chǔ)性試題中,等差數(shù)列、等比數(shù)列的這幾個公式是解題的根本,用錯了公式,解題就失去了方向。

an,Sn關(guān)系不清致誤

錯因分析:在數(shù)列問題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在關(guān)系:這個關(guān)系是對任意數(shù)列都成立的,但要注意的是這個關(guān)系式是分段的,在n=1和n≥2時這個關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關(guān)系式時要牢牢記住其“分段”的特點(diǎn)。當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時,這兩者之間可以進(jìn)行相互轉(zhuǎn)換,知道了an的具體表達(dá)式可以通過數(shù)列求和的方法求出Sn,知道了Sn可以求出an,解題時要注意體會這種轉(zhuǎn)換的相互性。

對等差、等比數(shù)列的性質(zhì)理解錯誤

錯因分析:等差數(shù)列的前n項(xiàng)和在公差不為0時是關(guān)于n的常數(shù)項(xiàng)為0的二次函數(shù)。一般地,有結(jié)論“若數(shù)列{an}的前N項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。解決這類題目的一個基本出發(fā)點(diǎn)就是考慮問題要全面,把各種可能性都考慮進(jìn)去,認(rèn)為正確的命題給以證明,認(rèn)為不正確的命題舉出反例予以駁斥。在等比數(shù)列中公比等于-1時是一個很特殊的情況,在解決有關(guān)問題時要注意這個特殊情況。

遺忘空集致誤

錯因分析:由于空集是任何非空集合的真子集,因此,對于集合B高三經(jīng)典糾錯筆記:數(shù)學(xué)A,就有B=A,φ≠B高三經(jīng)典糾錯筆記:數(shù)學(xué)A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了B≠φ這種情況,導(dǎo)致解題結(jié)果錯誤。尤其是在解含有參數(shù)的集合問題時,更要充分注意當(dāng)參數(shù)在某個范圍內(nèi)取值時所給的集合可能是空集這種情況?占且粋特殊的集合,由于思維定式的原因,考生往往會在解題中遺忘了這個集合,導(dǎo)致解題錯誤或是解題不全面。

忽視集合元素的三性致誤

錯因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對字母參數(shù)的一些要求。在解題時也可以先確定字母參數(shù)的范圍后,再具體解決問題。

四種命題的結(jié)構(gòu)不明致誤

錯因分析:如果原命題是“若A則B”,則這個命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價的命題,即“原命題和它的逆否命題等價,否命題與逆命題等價”。在解答由一個命題寫出該命題的其他形式的命題時,一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價關(guān)系。另外,在否定一個命題時,要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a,b都是奇數(shù)”。

充分必要條件顛倒致誤

錯因分析:對于兩個條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。

邏輯聯(lián)結(jié)詞理解不準(zhǔn)致誤

錯因分析:在判斷含邏輯聯(lián)結(jié)詞的命題時很容易因?yàn)槔斫獠粶?zhǔn)確而出現(xiàn)錯誤,在這里我們給出一些常用的判斷方法,希望對大家有所幫助:p∨q真<=>p真或q真,命題p∨q假<=>p假且q假(概括為一真即真);命題p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括為一假即假);┐p真<=>p假,┐p假<=>p真(概括為一真一假)。

求函數(shù)定義域忽視細(xì)節(jié)致誤

錯因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。在求一般函數(shù)定義域時要注意下面幾點(diǎn):(1)分母不為0;(2)偶次被開放式非負(fù);(3)真數(shù)大于0;(4)0的0次冪沒有意義。函數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時不要忘記了這點(diǎn)。對于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。

帶有絕對值的函數(shù)單調(diào)性判斷錯誤

錯因分析:帶有絕對值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),對于分段函數(shù)的單調(diào)性,有兩種基本的判斷方法:一是在各個段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,最后對各個段上的單調(diào)區(qū)間進(jìn)行整合;二是畫出這個分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)進(jìn)行直觀的判斷。研究函數(shù)問題離不開函數(shù)圖象,函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),在研究函數(shù)問題時要時時刻刻想到函數(shù)的圖象,學(xué)會從函數(shù)圖象上去分析問題,尋找解決問題的方案。對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,千萬記住不要使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  • 相關(guān)文章
  • 祝高考大捷的祝福語范文精選

    祝高考大捷的祝福語1、高考之日又來臨,考生家長心如焚。子女面前莫表現(xiàn),壓力太大難發(fā)揮。營養(yǎng)餐要準(zhǔn)備好,不能太葷壞腸胃。..

  • 簡短給學(xué)姐高考祝福語最新篇

    簡短給學(xué)姐高考祝福語例11.明天高考啦,以后不用6點(diǎn)起床啦,以后可以天天游泳啦,明天是新生活的開始,一定不能愁眉苦臉,今..

  • 高考祝福語精選示例【精華篇】

    高考祝福語精選示例1、面對目標(biāo),信心百倍,人生能有幾次搏?面對成績,心胸豁達(dá),條條大陸通羅馬。2、我的好朋友,我兒時的..

  • 關(guān)于50條高考生的經(jīng)典祝福語

    給高考生的經(jīng)典祝福語1、我堅定,我們付出了汗水,經(jīng)受了考驗(yàn),理想中大學(xué)殿堂的大門就一定會為我們而敞開,讓我們繼續(xù)艱辛卻..

  • 關(guān)于高考成功的祝福語匯集

    高考成功的祝福語匯集1、努力的苦讀,就為這一刻?!把你的實(shí)力盡力發(fā)揮出來,為了那些用心愛你的人,都會為你祝福、祈禱,相..

  • 關(guān)于給孩子們高考祝福語

    給孩子們高考祝福語1、面對目標(biāo),信心百倍,人生能有幾次搏?面對成績,心胸豁達(dá),條條大陸通羅馬。2、我的好朋友,我兒時的..

  • 幼兒園教師一學(xué)期總結(jié)【優(yōu)秀篇】幼兒園教師一學(xué)期總結(jié)【優(yōu)秀篇】

    【一:幼兒園教師一學(xué)期總結(jié)】一學(xué)期很快就要結(jié)束,回顧一學(xué)期所做的工作,現(xiàn)總結(jié)如下:一、教育教學(xué)工作:1、在開展區(qū)域活動中,我們根據(jù)幼兒年齡特點(diǎn)、發(fā)展需要投放..

  • 有關(guān)于集合的知識點(diǎn)總結(jié)【薦讀】有關(guān)于集合的知識點(diǎn)總結(jié)【薦讀】

    一.知識歸納:1.集合的有關(guān)概念。1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素注意:①集合與集合的元素是兩個不同的概念,教..

  • 數(shù)學(xué)作業(yè)檢查總結(jié)最新篇數(shù)學(xué)作業(yè)檢查總結(jié)最新篇

    數(shù)學(xué)作業(yè)檢查總結(jié)1在教導(dǎo)處組織下,數(shù)學(xué)教研組以組長具體負(fù)責(zé),三個備課組長協(xié)同檢查的方式,于11月12日對數(shù)學(xué)組教師的作業(yè)、教案進(jìn)行了檢查。本次檢查我們抱著客觀、..

  • 幼兒園教師一學(xué)期總結(jié)【優(yōu)秀篇】幼兒園教師一學(xué)期總結(jié)【優(yōu)秀篇】

    【一:幼兒園教師一學(xué)期總結(jié)】一學(xué)期很快就要結(jié)束,回顧一學(xué)期所做的工作,現(xiàn)總結(jié)如下:一、教育教學(xué)工作:1、在開展區(qū)域活動中,我們根據(jù)幼兒年齡特點(diǎn)、發(fā)展需要投放..

  • 有關(guān)于集合的知識點(diǎn)總結(jié)【薦讀】有關(guān)于集合的知識點(diǎn)總結(jié)【薦讀】

    一.知識歸納:1.集合的有關(guān)概念。1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素注意:①集合與集合的元素是兩個不同的概念,教..

  • 數(shù)學(xué)作業(yè)檢查總結(jié)最新篇數(shù)學(xué)作業(yè)檢查總結(jié)最新篇

    數(shù)學(xué)作業(yè)檢查總結(jié)1在教導(dǎo)處組織下,數(shù)學(xué)教研組以組長具體負(fù)責(zé),三個備課組長協(xié)同檢查的方式,于11月12日對數(shù)學(xué)組教師的作業(yè)、教案進(jìn)行了檢查。本次檢查我們抱著客觀、..

  • 會計專業(yè)個人簡短的實(shí)習(xí)總結(jié)會計專業(yè)個人簡短的實(shí)習(xí)總結(jié)

    會計實(shí)習(xí)個人總結(jié)篇120____年____月份,我開始在__有限公司實(shí)習(xí)擔(dān)任會計一職,從此踏出了人生中關(guān)鍵的一步:從學(xué)校走向社會開始了賺錢謀生的日子。雖然只是實(shí)習(xí)階段但..

  • 最新的大學(xué)會計專業(yè)實(shí)習(xí)總結(jié)報告最新的大學(xué)會計專業(yè)實(shí)習(xí)總結(jié)報告

    我學(xué)的專業(yè)是會計,為了加強(qiáng)自身的素質(zhì),培養(yǎng)較強(qiáng)的會計工作的操作能力,201X.2.20-5.20這段期間我在太原一家公司進(jìn)行了專業(yè)實(shí)習(xí)。實(shí)習(xí)期間要努力將自己在學(xué)校所學(xué)的..

  • 大學(xué)會計專業(yè)畢業(yè)生的實(shí)習(xí)總結(jié)6篇大學(xué)會計專業(yè)畢業(yè)生的實(shí)習(xí)總結(jié)6篇

    會計專業(yè)大學(xué)生實(shí)習(xí)總結(jié)篇1一、實(shí)習(xí)目的

  • 試用期崗位的個人述職報告和總結(jié)試用期崗位的個人述職報告和總結(jié)

    試用期個人述職報告篇1尊敬的各位領(lǐng)導(dǎo):